US009176752B1

a2 United States Patent

Marr et al.

(10) Patent No.: US 9,176,752 B1

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

HARDWARE-BASED MECHANISMS FOR
UPDATING COMPUTER SYSTEMS

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Michael David Marr, Monroe, WA
(US); Nachiketh Rao Potlapally,
Arlington, VA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 296 days.

Appl. No.: 13/693,946

Filed: Dec. 4, 2012

Int. Cl1.

GO6F 9724 (2006.01)

GO6F 15/177 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

CPC GO6F 9/44505 (2013.01); GO6F 8/65

(2013.01); GO6F §/665 (2013.01)

(45) Date of Patent: Nov. 3, 2015
(58) Field of Classification Search

CPC ..ot GOGF 8/65; GOG6F 8/665

USPC ittt 713/1,2, 100

See application file for complete search history.
(56) References Cited
U.S. PATENT DOCUMENTS

5,754,798 A * 5/1998 Ueharaetal. 710/104
8,015,563 B2* 9/2011 Araujoetal.cccen. 718/1

* cited by examiner

Primary Examiner — Michael J Brown
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

Techniques for using hardware-based mechanisms for updat-
ing computing resources are described herein. At a time after
receiving a code update request, one or more hardware-sup-
ported system management capabilities of processors within
acomputing system are invoked at least to interrupt execution
of currently running instructions. While the system manage-
ment capabilities are active and instruction execution is sus-
pended, programmatic routines are updated. After the updates
are complete, instruction execution is resumed.

25 Claims, 6 Drawing Sheets

400

Receive patch reguest

402

Y

Issue systermn management interrupt 1o processor [

404

A4

Obtain patch code

N aos

A 4

Verify authenticity and/or integrity of patch code _ 408

A4

Update target using patch code U 410

v

exacution

Issue instruction to processor to resume

o 412

U.S. Patent Nov. 3, 2015 Sheet 1 of 6 US 9,176,752 B1

100

Network 104

Patch Update

Authority Patch

Location 108

106 =

Interrupt
nterrup Firmware 112 Network interface 110

Handigr 114

Procassor 116

A/m\\
Memory 120 Guarantined Patch

instruction Execution Memory 122

Suspender 118

Data Storage 124 - Patch Target

126

Server 102

FIG. 1

U.S. Patent Nov. 3, 2015 Sheet 2 of 6 US 9,176,752 B1

200
Public Network 204

Control Plane Monitoring
208 Gateway 210 Entity 212

A X A

y ¥

internal Networking 214
A X A
A
® & @

Server 216 Server 216 Server 218 Server 216
Slot Siot Slot Siot
Slot Slot Slot Slot
Slot Stat Slot Slot
Stot Siot Slot
Stat Siot Slot
- /

Data Center 206

FIG. 2

U.S. Patent Nov. 3, 2015 Sheet 3 of 6 US 9,176,752 B1

300

Administrative Guest 0S Guest 0§ Guest 08
Operating System 308 306 306 306
I 3 F 3 F N N 3
A4 v v v
H
i
' Hypervisor 304
H
i

Server Hardware 302

FIG. 3

U.S. Patent Nov. 3, 2015 Sheet 4 of 6

Receive patch request

A4

Issue system management interrupt to processor

"

A4

Obtain patch code

A4

Verify authenticity and/or integrity of patch code

"

\ 4

Update target using patch code

A4

fssue instruction to processor to resume
execution

FIG. 4

402

404

406

408

410

412

US 9,176,752 B1

400

U.S. Patent Nov. 3, 2015 Sheet 5 of 6

Receive patch request

\ 4

Determine subset of servers to which patch
applies

\ 4

Suspend instruction execution on determined
subset and associated guest environments

A 4

Instalt patch

\ 4

Resume instruction execution on affected servers
and associated guest environments

FIG. 5

502

504

506

508

51¢

US 9,176,752 B1

500

U.S. Patent Nov. 3, 2015 Sheet 6 of 6 US 9,176,752 B1

600

Web Apglication

602
/__J 604 Server Server

606‘I : 608/ : A- :

information

612 614 616

US 9,176,752 B1

1
HARDWARE-BASED MECHANISMS FOR
UPDATING COMPUTER SYSTEMS

BACKGROUND

Modern computing applications place an increasing
importance on system reliability, stability and availability. In
many applications, especially those involving distributed
computing environments wherein a large plurality of cus-
tomer devices may independently use shared computing
resources, system outages can be burdensome to computing
resource operators or customers reliant on such systems.
Additionally, it may be difficult for a computing resource
operator to ascertain the tasks and/or availability require-
ments for a widely disparate and/or independent customer
base. However, as complexity and/or computing power
increases over time, so does the incidence of events requiring
updates to the computing resources. Such updates may
include patching of security flaws, software bug fixes and the
like. When such resources and associated software are shared
amongst a plurality of simultaneously connecting customers
via hypervisors or other types of virtualization software lay-
ers, interruption of the resources to install such updates may
be undesirable or otherwise difficult to coordinate without
significantly impacting customer experience.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments in accordance with the present dis-
closure will be described with reference to the drawings, in
which:

FIG. 1 illustrates an example environment in which servers
and other computing resources may be updated in accordance
with at least one embodiment;

FIG. 2 illustrates an example environment in which a plu-
rality of customers simultaneously connect to a datacenter,
components of the datacenter being updated in accordance
with at least one embodiment;

FIG. 3 illustrates an example hardware virtualization envi-
ronment in which components may be updated in accordance
with at least one embodiment;

FIG. 4 illustrates an example process for updating comput-
ing systems using processor-supported capabilities in accor-
dance with at least one embodiment;

FIG. 5 illustrates an example process for updating comput-
ing resources shared by a plurality of customers in accor-
dance with at least one embodiment; and

FIG. 6 illustrates an environment in which various embodi-
ments can be implemented.

DETAILED DESCRIPTION

In the following description, various embodiments will be
described. For purposes of explanation, specific configura-
tions and details are set forth in order to provide a thorough
understanding of the embodiments. However, it will also be
apparent to one skilled in the art that the embodiments may be
practiced without the specific details. Furthermore, well-
known features may be omitted or simplified in order not to
obscure the embodiment being described.

Techniques described and suggested herein include meth-
ods, systems and processes for updating computing system
firmware, microcode or executable code operating thereon. In
particular, techniques are disclosed for utilizing hardware
capabilities to facilitate operational updates of software plat-
forms (such as operating systems, hypervisors or microcode)
while being simultaneously shared with a plurality of entities

10

15

20

25

30

35

40

45

50

55

60

65

2

connecting therewith. For example, a server upon which a
virtualization scheme is implemented (e.g., using a hypervi-
sor) may require updates to the hypervisor software or other
configuration state. Since the hypervisor itself is providing a
service abstraction layer for virtual machines (VM), it can be
challenging to update the hypervisor while VMs are active.
Updates to the server software or firmware may be facilitated
by placing one or more processors into a hardware-supported
management mode, such as the SMM supported by Intel
Architecture (IA) processors, which among other functions
provides a mechanism to suspend execution of instructions
thereon. While instruction execution is suspended, critical or
other components of the server may be safely updated, such
as virtualization software (e.g., hypervisor or other “service
domain” abstractions), processor microcode, system firm-
ware or other management services or configuration state.
The update may be acquired from a location outside of the
server being updated, such as from a remote network location.
The software patch may, in some embodiments, be verified
for integrity and/or authenticated using various cryptographic
methods, such as methods known to those of ordinary skill in
the art. Upon the successful completion of the update, the
previously suspended execution of instructions upon the pro-
cessor(s) can be resumed, in some embodiments using a
hardware function. Various sub-operations associated with
the update (such as retrieval and/or temporary storage of the
update code, temporary storage of the state of the processor
immediately prior to suspension of instruction execution, and
the like) may, in some embodiments, take advantage of an
isolated area of the memory of the server accessible only
during the update operation, such as system management
random access memory (SMRAM). The entire process may
be orchestrated by disparate processes and/or components, or,
in some embodiments, may be performed and/or facilitated
using a specific component adapted for such purposes, such
as by using an interrupt handler implemented in system firm-
ware provided by the Basic Input/Output System (BIOS) or
Unified Extensible Firmware Interface (UEFI).

FIG. 11illustrates an environment 100 for updating systems,
such as servers, and associated code running thereon inaccor-
dance with at least one embodiment. One or more servers 102
connect to one or more networks 104 and/or entities associ-
ated therewith, such as other servers also connected to the
network, either directly or indirectly. The network may, for
example, be a local network, a public network such as the
Internet, a wide area network, a wireless and/or mobile net-
work, a distributed computing system with a plurality of
network nodes and/or the like. The aforementioned entities
may include any device that is capable of connecting with the
server via a network, including at least servers, laptops,
mobile devices such as smartphones or tablets, distributed
computing systems and components thereof (including
abstracted components such as virtual machine (VM)
instances) and/or other types of computing devices and/or
components. In some embodiments, one or more of such
entities may be a patch update authority 106 configured to
request a patch located somewhere on the network 108 to be
applied to the server 102. The patch may be located on the
same or different entity requesting the application thereof. In
at least one embodiment, the patch update authority 106 is a
device that operates, at least in part, according to instructions
input by an administrator of the server 102, a larger distrib-
uted computing system to which the server belongs and/or
both. The patch update authority 106 may be configured to
manage patches on behalf of one or more servers (including
the server 102). The patch update authority 106 may itself be
updated, for example, through interaction with a human

US 9,176,752 B1

3

operator who may be an administrator that has authority to
approve updates (e.g., new firmware images or software
patches). The patch update authority 106 for a distributed
computing system may be a definitive authority of approved
and/or preferred patches. Upon being updated, the patch
update authority may operate so that the updates are installed
where appropriate using any suitable roll-out strategy, such as
by pushing or pulling patches.

In some embodiments, a server 102 receives, through a
network interface 110, a request from the patch update
authority 106 to apply a patch. The request may be received in
various ways in accordance with various embodiments. For
example, in some embodiments, the server 102 implements
an update agent service that is configured to interact with the
patch update authority 106. The update agent service may
obtain patches in various ways. In some embodiments, the
update agent service receives patches that are pushed from the
patch update authority 106. In other embodiments, the update
agent service polls the patch update authority 106 for updated
patches, such as by requesting the latest patch version iden-
tifier from the patch update authority 106. It should be noted
that other ways of updating the server 102 are also considered
as being within the scope of the present disclosure. As one
illustrative example, the update service may not be a central-
ized service, but may be implemented using a BitTorrent or
other protocol that enables peer-to-peer sharing of computer
system updates. In this example, each server of a group of
servers (e.g., including the server 102) is configured to vend
bits to neighbor servers.

Returning to the embodiment illustrated in FIG. 1, requests
from the patch update authority 106 may be received, inter-
cepted, processed and/or detected by the server 102 using an
application provided by a firmware 112 associated with the
server 102 that is provided by the BIOS or UEFIL. The firm-
ware may include, or may be adapted to provide the server
102 functionality to handle such requests, such as by way of
an interrupt handler 114. In some embodiments, an interrupt,
such as a System Management Interrupt (SMI) supported by
1A processors, is directed to one or more processors 116 of the
server, whereupon the processor uses in-built functionality to
suspend the execution of one or more instruction pipelines
118 by that processor, such as SMM as supported by 1A
processors. For example, an [A processor may receive an SMI
that is issued from the patch update authority through the
network interface 110, whereupon the processor performs
internal synchronization (as defined on microcode associated
with the processor and containing one or more routines asso-
ciated with system management) to suspend all processor
threads, thereby placing the processor in SMM. The SMI may
originate, for example, from a control plane computer sub-
system (often simply referred to as a “control plane”) of a
larger distributed computing system in which the server is
integrated (or at least in operative communication). The SMI
may be invoked in several ways, including by a data write to
programmed input/output port 0xB2, via the expiration of a
periodic timer associated with the SMI, from or through any
number of system buses and/or peripherals (such as through
submission of a specially coded packet to a network interface
of the server), via events generated or monitored by dongles
(e.g., those connected via a Universal Serial Bus (USB)), and
the like. As may be contemplated, the SMI may be generated
upon demand (e.g., of an administrator and/or user of the
server), or periodically, such as by polling for the existence of
updates to the code operating therein.

In some embodiments, upon entering SMM, the processor
is then configured to execute the code associated with the
interrupt handler (e.g., SMI handler) of the firmware 112. The

10

15

20

25

30

35

40

45

50

55

60

65

4

code associated with the interrupt handler may include, but is
not limited to, authentication routines (such as cryptographic
verification), various routines associated with forming and
storing a “snapshot” state of the processor just prior to enter-
ing SMM, routines to retrieve and/or invoke update code
stored remotely or in local memory, routines to directly
modify and/or overwrite data storage locations, whether logi-
cal or physical, containing the code to be updated, and the
like. In embodiments where SMM is utilized, as SMM pro-
vides an uninterruptable (e.g., all other processor interrupts
are disabled) execution environment that is at the highest
level of code execution privilege (e.g., even higher than that of
a hypervisor with direct hardware access, even when such
hypervisor is running in root mode) and with access to all
regions of the memory 120, provisions for ensuring isolation
and integrity of the execution environment while in SMM
take on increased importance. To this end, the memory may
include an isolated section 122 that is only accessible to the
processor while in SMM, such as System Management Ran-
dom Access Memory (SMRAM). The routines and code asso-
ciated with the interrupt handler, including the handler itself,
may be verified, moved, copied, executed and/or cached
solely within or from, for example, SMRAM. Additionally,
just prior to or in the process of entering SMM, a state corre-
sponding to that of the entire processor may be generated and
stored within SMRAM so as to both protect the state from
external tampering or corruption, as well as to provide for a
seamless resumption of normal operation after SMM is
exited. It may be appreciated that such an execution environ-
ment allows for any number of measures and routines that
ensure the verifiable, safe application of patches to an opera-
tional software base. For example, the SM1 handler code may
include routines to securely obtain and authenticate the
update code. In some embodiments, the update code may be
obtained from a specific, secure location on a locally con-
nected network, the location being hardcoded into the asso-
ciated routine(s) within the SMI handler code and firewalled
or otherwise restricted from accepting connections from a
predefined subset of requesting locations that include the
implementing server. In alternate embodiments, the update
code may be provided by a patch update authority, e.g., as a
part of the initial patch request and/or as an argument to the
SMI handler. In some embodiments, the update code may be
digitally signed using a strong private cryptographic key, and
the root public key for verifying the digitally signed update
code may be hardcoded into the SMI handler code. It is
contemplated that other processor architectures supporting
similar system management modes and thread quiescence
routines may use the processes and techniques described
herein.

Upon obtaining the code patch and bootstrapping the
update process as described above, any appropriate update
mechanism may thereafter be used. For example, the SMI
handler itself may implement the application of the update
code by directly writing the update code to the memory
address range and/or target locations 126 upon the server’s
data storage 124 as specified by the update code itself. Alter-
natively or in addition, the SMI handler may invoke specific
update routines or hooks within the virtual machine monitor
(e.g., hypervisor, sometimes referred to as a virtual machine
manager) by, for example, providing the update code to the
hypervisor and calling the hypervisor’s update routines to
apply the patch. In such routines, it may be appreciated that
the SMI handler may, prior to calling the hypervisor’s update
functions, verify the cryptographic hashes of the update func-
tions to ensure their integrity by comparing them with refer-
ence hash values, such as may be supplied with the update

US 9,176,752 B1

5

code itself. In some embodiments, where applicable, the SMI
handler may perform other operations, in addition or in the
alternative, such as decrypting encrypted code. In such
embodiments, the required update routines may be inherently
supported by the hypervisor, or alternatively, the hypervisor
may be adapted to support them. Upon successful application
of'the update code, the SMI handler may execute and/or issue
an instruction to the processor to resume execution from the
point where all the processor threads were interrupted. Such
resumption may be effected by an instruction such as the
RSM instruction on Intel Architectures, and may be per-
formed such that execution of the now updated code may be
resumed without a server crash, disruptive downtime, or other
adverse effects. Thus, numerous technological advantages
are achieved, such as the ability to update hypervisors without
evicting or otherwise shutting down virtual machines or
applications operating on computer hardware. Application
routines may, therefore, resume without restarting, providing
minimal disruption to the application routines and those
dependent on the application routines.

As may be appreciated, and as previously mentioned, the
server 102 may be among a plurality of servers intercon-
nected in a distributed computing system and/or datacenter.
FIG. 2 illustrates a distributed computing and/or datacenter
environment 200 in which various embodiments may be exer-
cised. A plurality of customer devices 202 communicate via
public network 204 to datacenter 206. The customer devices
may include any devices capable of connecting via a public
network to the data center, such as personal computers, smart-
phones, tablet computing devices, and the like. In an exem-
plary embodiment, the public network may be the Internet,
although other publicly accessible networks (such as mobile
and/or wireless networks) are contemplated herein. The data-
center 206 includes one or more management components,
including but not limited to a control plane 208, a gateway 210
and/or a monitoring entity 212, which are collectively con-
nected via internal networking 214 to a plurality of internal
servers 216. The control plane 208 may receive requests to
manipulate computing resources of the datacenter, such as
provisioning resources, altering routing or performing main-
tenance, including updates to code running on various com-
ponents of the datacenter. The gateway 210 may filter and
route traffic in and out of the datacenter, such as to and/or
from the servers via the internal networking. The monitoring
entity may receive and report information about the status of
computing resources in the data center, such as information
about the internal servers.

Each internal server may be shared by multiple logical
machine slots 218, each slot capable of running a guest oper-
ating system, such as would be the case in a virtualization
system that abstracts the hardware of a given server into a
plurality of semi-independent execution environments. Any
number of the plurality of the customer devices previously
described may run any number of guest operating systems in
any number of slots, up to the limits of the datacenter
(whether physical, logical or externally imposed), and the
slots are allocated to the customers according to one or more
of'several operational and/or business-related criteria, such as
geographical proximity, level of support and/or resources
allocated to the user, server and/or slot health and/or readi-
ness, and the like. In such a distributed environment, it may be
contemplated that a large plurality of servers, and accordingly
an even larger plurality of guest operating systems within the
aforementioned slots, may simultaneously be affected by the
emergence of a security threat and/or the necessity of a code
update. Congruently, a large number of customers may be

10

15

20

25

30

35

40

45

50

55

60

65

6

affected by the disruption of one or more of the servers and/or
slots upon which a code update is necessitated.

Thus, the techniques described at least in connection with
FIG. 1 may be scaled and/or adapted to provide minimally
disruptive updates to computing environments associated
with and/or dependent on a distributed computing system
and/or datacenter. For example, each slot may have access to
one or more virtual processors (VCPUs). The SMM sup-
ported by the CPU of the slot’s corresponding server (e.g., a
physical CPU) may be invoked, thereby pausing each VCPU
s0 as to seamlessly update code of the server with minimal
disruption. As may be contemplated, a customer device asso-
ciated with the exemplary slot and/or guest operating system
may issue (through the control plane, for example), an SMI,
either directly or indirectly (e.g., as part of a broader “code
patching” capability). Analogously, if a system administrator
determines that a plurality of slots on a subset of the servers
require updating, e.g., as a result of an emergent security
threat, the administrator may issue (e.g., through the control
plane), a request to the control plane to bootstrap the patching
process to the determined subset of slots and/or servers. The
examples given are not exhaustive; due to the minimally
disruptive nature of the update mechanisms described herein,
any subset or operational layer of the datacenter’s servers,
including those layers with direct hardware access and/or
associated with a large plurality of connected customer
devices, may be updated using the described techniques with-
out unduly affecting the operation of the operational layers
dependent thereon.

As previously mentioned, the server hardware may be
abstracted using virtualization techniques to simultaneously
operate a plurality of guest operating systems. FIG. 3 illus-
trates an environment 300 utilizing one such technique, using
a virtual machine monitor or hypervisor. The hardware 302 of
the server, in some embodiments similar to that of server 102
or 216 described in connection with FIG. 1 and FIG. 2,
respectively, interfaces with a virtual machine monitor or
hypervisor 304 running directly on the hardware, e.g., a “bare
metal” or native hypervisor. Examples of such hypervisors
include Xen, Hyper-V®, and the like. Hypervisors typically
run at a higher, more privileged processor state than any other
software on the machine, and provide services such as
memory management and processor scheduling for depen-
dent layers and/or domains. The most privileged of such
layers and/or domains resides in the service domain layer,
which may include an administrative operating system 308
for configuring the operation and functionality of the hyper-
visor, as well as that of domains of lower privilege, such as
guest domains including guest operating systems 306, which
may be heterogeneous (e.g., running different operating sys-
tems than each other). The service domain may have direct
access to the hardware resources of the server 302 by way of
the hypervisor, while the user domains may not. As may be
appreciated, and as mentioned in connection with FIGS. 1
and 2, updates to the hypervisor may affect some or all of the
subservient domains. Similarly, a security threat shared
amongst multiple virtualization layers may apply to some or
all of the guest operating systems, administrative operating
systems, and/or the hypervisor. Thus, an entity connected to
the server hardware, such as the control plane 208 described
in connection with FIG. 2, may bootstrap the update tech-
niques described in connection with FIGS. 1 and 2 on or
across all affected domains. For example, the control plane
may cause an SMI to be issued or otherwise interrupt instruc-
tion execution on all VCPUs associated with a given server or
plurality of servers, e.g., those associated with guest operat-
ing systems operating thereon, prior to updating the hypervi-

US 9,176,752 B1

7

sor(s) upon which those operating systems rely, and upon
completing a patch to the hypervisor, the administrative oper-
ating system, and/or the guest operating system(s), resume
instruction execution upon all processors (virtual or other-
wise) upon which instruction execution was suspended.
Although techniques for patching various aspects of a hyper-
visor-based virtualization scheme is illustratively described
herein, the update techniques, the update mechanisms
described are also applicable to code running within or upon
other types and subtypes of virtualization, such as hardware
virtualization, software virtualization, hardware-assisted vir-
tualization (such as virtualization techniques utilizing Intel®
VT-x, VTI-i and/or AMD® AMD-V implementations), full
virtualization, paravirtualization, partial virtualization, and
any variants and/or subtypes thereof. As may be contem-
plated, the necessity of interrupting execution upon some or
all VCPUs running on a given server may, in some embodi-
ments, depend at least in part on the type of virtualization
used, and/or the particular implementations thereof.

FIG. 4 illustrates an example process 400 for updating code
operating on computing systems in accordance with at least
one embodiment. Some or all of process 400 (or any other
processes described herein or variations and/or combinations
thereof) may be performed under the control of one or more
computer systems configured with executable instructions
and may be implemented as code (e.g., executable instruc-
tions, one or more computer programs or one or more appli-
cations) executing collectively on one or more processors, by
hardware or combinations thereof. The code may be stored on
a computer-readable storage medium, for example, in the
form of a computer program comprising a plurality of instruc-
tions executable by one or more processors. The computer-
readable storage medium may be non-transitory. In some
embodiments, one or more components of server 102 as
described in connection with FIG. 1 and/or datacenter 206 as
described in connection with FIG. 2 may perform process
400.

An entity associated with targeted server(s) and/or abstrac-
tions thereof receives a request 402 to update (patch) code
currently running thereon. The request may be received 402,
for example, from an update agent service, such as described
above in connection with FIG. 1. The receiving entity may be
a component of the server itself or an entity external to the
server, such as the control plane 208 described in connection
with FIG. 2. The receiving entity issues an SMI or similar
operational interrupt to the processor 404, such as by one or
more of the techniques described in at least FIGS. 1 and 2,
thereby suspending operation of running threads and/or
instructions and, in some embodiments, placing the processor
in SMM. The patch code associated with the request is
obtained 406, such as over a network using techniques
described in at least FIG. 1, and in some embodiments using
SMI handler code that resides in firmware of the target server,
also as described in connection with FIG. 1. The integrity
and/or authenticity of the patch code is verified 408, such as
by performing a cryptographic operation as described in con-
nection with FIG. 1. The patch code is then applied to the
associated targeted code 410 by, for example, directly updat-
ing and/or overwriting a memory address range or storage
offset, or by invoking updating functionality built into a
hypervisor of the server, such as described in connection with
at least FIG. 1. Upon successfully completing the update
routine, an instruction to resume execution of the suspended
threads and/or instructions is issued to the processor 412, in
some embodiments while still within SMM and/or using the
SMI handler, as described in connection with FIG. 1.

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 5 illustrates an example process 500 for updating
systems, servers and/or abstractions thereof within distrib-
uted and/or collective computing environments. A patch
request is received 502, such as by the control plane 208
described in connection with FIG. 2. The receiving entity
determines, based, in some embodiments, on the nature of'the
patch and/or one or more operational parameters as described
in connection with FIG. 2, the subset of servers and/or
abstractions thereof to which the patch applies. Upon making
the determination, the receiving entity issues instruction(s) to
suspend execution of instructions and/or threads on proces-
sors associated with the determined subset 506, including, in
some embodiments, all associated VCPUs, as described in
connection with FIGS. 1-3. In some embodiments, as previ-
ously described, the instructions may be SMIs to the affected
servers and/or abstractions (e.g., logical and/or bare metal
machine instances). The patch is thereafter installed on the
determined subset 508, using, in some embodiments, some or
all of the techniques described in connection with FIGS. 1-3,
and/or some or all of process 400. Upon successtul installa-
tion of the update patch, execution of instructions and/or
threads on all processors and/or VCPUs upon which such
execution was previously suspended is resumed 510, for
example, by issuing one or more RSM instruction as
described in connection with FIGS. 1-3.

As with all processes described herein, numerous varia-
tions of the processes 400, 500 are within the scope of the
present disclosure. For example, in some embodiments, the
patch code is encrypted. Accordingly, variations of the
present disclosure may include decrypting patch code prior to
installation. Decryption may be performed by any suitable
device, such as a processor of a device for which the patch
code is applied. Such a processor may decrypt the patch while
in SMM. Decryption may be performed using any suitable
decryption algorithm according to a method by which the
patch code was encrypted.

In other examples, an SMI handler, in some embodiments,
uses functions present in a Hypervisor to apply a patch to the
hypervisor with minimal disruption. Such patching functions
may be functions that are pre-configured in the hypervisor, by
an operator of a fleet of hardware devices that includes a
device on which the hypervisor operates (e.g. a distributed
computing resource (cloud) provider), as statically compiled
code, or dynamically loadable hypervisor modules. In such
embodiments, reference cryptographic hash values of the
hypervisor patching functions may be passed along in an
authenticated and encrypted patch. Since the operator has
information indicating which version of the hypervisor is
running on the machine to be patched, the operator can pro-
vide the reference hash values corresponding to the trusted
patching function code present in a corresponding version of
the hypervisor. Upon receipt of the patch, the SMI handler
may authenticate the patch and, if authentication is success-
ful, extract the reference hash values, compute the crypto-
graphic hash of the hypervisor patching functions, and com-
pare the computed hash values with the reference hash values
(extracted from the patch). Matching hash values may indi-
cate the hypervisor functions have not been tampered with,
and can be used as intended when they were originally con-
figured by the operator provider. The SMI handler may then
transfer program execution (still in SMM mode) to the hyper-
visor patching functions to apply the patch. The Hypervisor
functions may take the patch (authenticated by the SMI han-
dler) as input, and proceed to apply it to the hypervisor code.

As other examples, various other strategies for patching are
also considered as being within the scope of the present
disclosure. For instance, the above techniques may be used to

US 9,176,752 B1

9

patch (e.g., “Dom0”) operating systems (OSs), use the hyper-
visor to patch the DomO0 OS, and/or use the Dom0 OS to patch
the hypervisor. Generally, the techniques described and sug-
gested herein also apply to patching any trusted computing
base (TCB), which can include both the hypervisor and the
hosting domain OS. Generally, the TCB may be a set of
components (hardware, firmware, and/or software) that are
determined to be critical to the security of a computer system.
In an embodiment, in order for an offload to a TCB (i.e.
non-SMI handler code) to be secure, a corresponding SMI
handler may be configured to load the executable patching
functions on behalf of the TCB, or otherwise also validate the
loader functionality in the TCB. This may be performed so as
to prevent any TCB loading functionality from tampering
with the executable entry points as it brings them into
memory for execution in the processor. That is, the tampering
with the TCB may not be in the patching functions but in the
part of the TCB that prepares the patching functions for
execution by the CPU (e.g., reads pages from persistent stor-
age, initializes code or data sections, fixes up addresses, sets
execution permissions, and the like.) Alternatively, the TCB
could guarantee (e.g., by an appropriately configured elec-
tronic message to the SMI handler) that the patching func-
tions are fully loaded and pinned in memory first, and then the
SMI handler may then validate the integrity of the in-memory
image of the patching functions and directly use the
in-memory image of the patching functions.

FIG. 6 illustrates aspects of an example environment 600
for implementing aspects in accordance with various embodi-
ments. As will be appreciated, although a Web-based envi-
ronment is used for purposes of explanation, different envi-
ronments may be used, as appropriate, to implement various
embodiments. The environment includes an electronic client
device 602, which can include any appropriate device oper-
able to send and receive requests, messages or information
over an appropriate network 604 and convey information
back to a user of the device. Examples of such client devices
include personal computers, cell phones, handheld messag-
ing devices, laptop computers, set-top boxes, personal data
assistants, electronic book readers and the like. The network
can include any appropriate network, including an intranet,
the Internet, a cellular network, a local area network or any
other such network or combination thereof. Components
used for such a system can depend at least in part upon the
type of network and/or environment selected. Protocols and
components for communicating via such a network are well
known and will not be discussed herein in detail. Communi-
cation over the network can be enabled by wired or wireless
connections and combinations thereof. In this example, the
network includes the Internet, as the environment includes a
Web server 606 for receiving requests and serving content in
response thereto, although for other networks an alternative
device serving a similar purpose could be used as would be
apparent to one of ordinary skill in the art.

The illustrative environment includes at least one applica-
tion server 608 and a data store 610. It should be understood
that there can be several application servers, layers, or other
elements, processes or components, which may be chained or
otherwise configured, which can interact to perform tasks
such as obtaining data from an appropriate data store. As used
herein the term “data store” refers to any device or combina-
tion of devices capable of storing, accessing and retrieving
data, which may include any combination and number of data
servers, databases, data storage devices and data storage
media, in any standard, distributed or clustered environment.
The application server can include any appropriate hardware
and software for integrating with the data store as needed to

10

15

20

25

30

35

40

45

50

55

60

65

10

execute aspects of one or more applications for the client
device, handling a majority of the data access and business
logic for an application. The application server provides
access control services in cooperation with the data store, and
is able to generate content such as text, graphics, audio and/or
video to be transferred to the user, which may be served to the
user by the Web server in the form of HTML, XML or another
appropriate structured language in this example. The han-
dling of all requests and responses, as well as the delivery of
content between the client device 602 and the application
server 608, can be handled by the Web server. It should be
understood that the Web and application servers are not
required and are merely example components, as structured
code discussed herein can be executed on any appropriate
device or host machine as discussed elsewhere herein.

The data store 610 can include several separate data tables,
databases or other data storage mechanisms and media for
storing data relating to a particular aspect. For example, the
data store illustrated includes mechanisms for storing produc-
tion data 612 and user information 616, which can be used to
serve content for the production side. The data store also is
shown to include a mechanism for storing log data 614, which
can be used for reporting, analysis or other such purposes. It
should be understood that there can be many other aspects
that may need to be stored in the data store, such as for page
image information and to access right information, which can
be stored in any of the above listed mechanisms as appropriate
or in additional mechanisms in the data store 610. The data
store 610 is operable, through logic associated therewith, to
receive instructions from the application server 608 and
obtain, update or otherwise process data in response thereto.
In one example, a user might submit a search request for a
certain type of item. In this case, the data store might access
the user information to verify the identity of the user, and can
access the catalog detail information to obtain information
about items of that type. The information then can be returned
to the user, such as in a results listing on a Web page that the
user is able to view via a browser on the user device 602.
Information for a particular item of interest can be viewed in
a dedicated page or window of the browser.

Each server typically will include an operating system that
provides executable program instructions for the general
administration and operation of that server, and typically will
include a computer-readable storage medium (e.g., a hard
disk, random access memory, read only memory, etc.) storing
instructions that, when executed by a processor of the server,
allow the server to perform its intended functions. Suitable
implementations for the operating system and general func-
tionality of the servers are known or commercially available,
and are readily implemented by persons having ordinary skill
in the art, particularly in light of the disclosure herein.

The environment in one embodiment is a distributed com-
puting environment utilizing several computer systems and
components that are interconnected via communication links,
using one or more computer networks or direct connections.
However, it will be appreciated by those of ordinary skill in
the art that such a system could operate equally well in a
system having fewer or a greater number of components than
are illustrated in FIG. 6. Thus, the depiction of the system 600
in FIG. 6 should be taken as being illustrative in nature, and
not limiting to the scope of the disclosure.

The various embodiments further can be implemented in a
wide variety of operating environments, which in some cases
can include one or more user computers, computing devices
or processing devices which can be used to operate any of a
number of applications. User or client devices can include any
of'a number of general purpose personal computers, such as

US 9,176,752 B1

11

desktop or laptop computers running a standard operating
system, as well as cellular, wireless and handheld devices
running mobile software and capable of supporting a number
of networking and messaging protocols. Such a system also
can include a number of workstations running any of'a variety
of commercially-available operating systems and other
known applications for purposes such as development and
database management. These devices also can include other
electronic devices, such as dummy terminals, thin-clients,
gaming systems and other devices capable of communicating
via a network.

Most embodiments utilize at least one network that would
be familiar to those skilled in the art for supporting commu-
nications using any of a variety of commercially-available
protocols, such as TCP/IP, OSI, FTP, UPnP, NFS, CIFS and
AppleTalk. The network can be, for example, a local area
network, a wide-area network, a virtual private network, the
Internet, an intranet, an extranet, a public switched telephone
network, an infrared network, a wireless network and any
combination thereof.

In embodiments utilizing a Web server, the Web server can
run any of a variety of server or mid-tier applications, includ-
ing HTTP servers, FTP servers, CGI servers, data servers,
Java servers and business application servers. The server(s)
also may be capable of executing programs or scripts in
response requests from user devices, such as by executing one
or more Web applications that may be implemented as one or
more scripts or programs written in any programming lan-
guage, such as Java®, C, C# or C++, or any scripting lan-
guage, such as Perl, Python or TCL, as well as combinations
thereof. The server(s) may also include database servers,
including without limitation those commercially available
from Oracle®, Microsoft®, Sybase® and IBM®.

The environment can include a variety of data stores and
other memory and storage media as discussed above. These
can reside in a variety of locations, such as on a storage
medium local to (and/or resident in) one or more of the
computers or remote from any or all of the computers across
the network. In a particular set of embodiments, the informa-
tion may reside in a storage-area network (“SAN”) familiar to
those skilled in the art. Similarly, any necessary files for
performing the functions attributed to the computers, servers
or other network devices may be stored locally and/or
remotely, as appropriate. Where a system includes comput-
erized devices, each such device can include hardware ele-
ments that may be electrically coupled via a bus, the elements
including, for example, at least one central processing unit
(CPU), at least one input device (e.g., a mouse, keyboard,
controller, touch screen or keypad), and at least one output
device (e.g., a display device, printer or speaker). Such a
system may also include one or more storage devices, such as
disk drives, optical storage devices, and solid-state storage
devices such as random access memory (“RAM”) or read-
only memory (“ROM”), as well as removable media devices,
memory cards, flash cards, etc.

Such devices also can include a computer-readable storage
media reader, a communications device (e.g., a modem, a
network card (wireless or wired), an infrared communication
device, etc.) and working memory as described above. The
computer-readable storage media reader can be connected
with, or configured to receive, a computer-readable storage
medium, representing remote, local, fixed and/or removable
storage devices as well as storage media for temporarily
and/or more permanently containing, storing, transmitting
and retrieving computer-readable information. The system
and various devices also typically will include a number of
software applications, modules, services or other elements

20

40

45

55

12

located within at least one working memory device, including
an operating system and application programs, such as a
client application or Web browser. It should be appreciated
that alternate embodiments may have numerous variations
from that described above. For example, customized hard-
ware might also be used and/or particular elements might be
implemented in hardware, software (including portable soft-
ware, such as applets) or both. Further, connection to other
computing devices such as network input/output devices may
be employed.

Storage media and computer readable media for containing
code, or portions of code, can include any appropriate media
known or used in the art, including storage media and com-
munication media, such as but not limited to volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage and/or trans-
mission of information such as computer readable instruc-
tions, data structures, program modules or other data,
including RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disk (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices or
any other medium which can be used to store the desired
information and which can be accessed by the a system
device. Based on the disclosure and teachings provided
herein, a person of ordinary skill in the art will appreciate
other ways and/or methods to implement the various embodi-
ments.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

Other variations are within the spirit of the present disclo-
sure. Thus, while the disclosed techniques are susceptible to
various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in the drawings
and have been described above in detail. It should be under-
stood, however, that there is no intention to limit the invention
to the specific form or forms disclosed, but on the contrary, the
intention is to cover all modifications, alternative construc-
tions and equivalents falling within the spirit and scope of the
invention, as defined in the appended claims.

The use of the terms “a” and “an” and “the” and similar
referents in the context of describing the disclosed embodi-
ments (especially in the context of the following claims) are
to be construed to cover both the singular and the plural,
unless otherwise indicated herein or clearly contradicted by
context. The terms “comprising,” “having,” “including,” and
“containing” are to be construed as open-ended terms (i.e.,
meaning “including, but not limited to,”) unless otherwise
noted. The term “connected” is to be construed as partly or
wholly contained within, attached to, or joined together, even
if there is something intervening. Recitation of ranges of
values herein are merely intended to serve as a shorthand
method of referring individually to each separate value falling
within the range, unless otherwise indicated herein, and each
separate value is incorporated into the specification as if it
were individually recited herein. All methods described
herein can be performed in any suitable order unless other-
wise indicated herein or otherwise clearly contradicted by
context. The use of any and all examples, or exemplary lan-
guage (e.g., “such as”) provided herein, is intended merely to
better illuminate embodiments of the invention and does not
pose a limitation on the scope of the invention unless other-
wise claimed. No language in the specification should be

US 9,176,752 B1

13

construed as indicating any non-claimed element as essential
to the practice of the invention.

Preferred embodiments of this disclosure are described
herein, including the best mode known to the inventors for
carrying out the invention. Variations of those preferred
embodiments may become apparent to those of ordinary skill
in the art upon reading the foregoing description. The inven-
tors expect skilled artisans to employ such variations as
appropriate, and the inventors intend for the invention to be
practiced otherwise than as specifically described herein.
Accordingly, this invention includes all modifications and
equivalents of the subject matter recited in the claims
appended hereto as permitted by applicable law. Moreover,
any combination of the above-described elements in all pos-
sible variations thereof is encompassed by the invention
unless otherwise indicated herein or otherwise clearly con-
tradicted by context.

All references, including publications, patent applications
and patents, cited herein are hereby incorporated by reference
to the same extent as if each reference were individually and
specifically indicated to be incorporated by reference and
were set forth in its entirety herein.

What is claimed is:

1. A computer-implemented method for configuring com-
puter systems, comprising:

receiving, by a computer system, a system management

interrupt;

as a result of receiving the system management interrupt,

entering a System Management Mode supported by one
or more processors of the computer system so as to
temporarily suspend execution of a subset of executable
instructions associated with operation of a trusted com-
puting base that includes at least a virtual machine man-
ager and a service domain layer;

receiving one or more updates to at least a portion of the

trusted computing base;

authenticating the integrity of the received update by at

least performing a cryptographic operation on the
received update with a cryptographic key;

updating the portion of the trusted computing base using

the authenticated update; and

resuming execution of the subset of the executable instruc-

tions.

2. The computer-implemented method of claim 1, wherein
the received system management interrupt is handled by a
system management interrupt handler that is resident in firm-
ware associated with the computer system.

3. The computer-implemented method of claim 2, wherein
the system management interrupt handler includes code that
is executable by the one or more processors at a time after
entering the System Management Mode to at least update the
portion of the trusted computing base.

4. The computer-implemented method of claim 3, wherein
the system management interrupt handler authenticates the
integrity of the received update.

5. The computer-implemented method of claim 3, wherein
entering the System Management Mode includes storing, in a
memory of the computer system that is only accessible to the
one or more processors while in the System Management
Mode, the system management interrupt handler code and a
representation of a state of the one or more processors at a
time preceding the temporary suspension of the execution of
the subset of the executable instructions.

6. The computer-implemented method of claim 3, wherein
the system management interrupt handler resumes the execu-
tion of the subset of the executable instructions at a time after

30

35

40

45

60

65

14

the virtual machine monitor (or hypervisor) has been updated
by at least issuing a RSM instruction to the one or more
processors.

7. The computer-implemented method of claim 1, wherein
the cryptographic key is configured to digitally sign the
update.

8. A computer-implemented method for configuring com-
puter systems, comprising:

receiving, at a computer system, a code update request;

at a time after receiving the code update request, invoking

one or more hardware-supported system management
capabilities of one or more processors of the computer
system at least to interrupt execution of at least a subset
of executable instructions associated with one or more
programmatic routines;

updating the one or more programmatic routines while

execution of the associated subset of instructions is
interrupted; and

resuming execution of the subset of the executable instruc-

tions.

9. The computer-implemented method of claim 8, wherein
the one or more programmatic routines are routines of a
Trusted Computing Base of the computer system.

10. The computer-implemented method of claim 8, further
comprising adapting a firmware associated with the computer
system to implement an update handler that at least updates
the one or more programmatic routines while the execution of
the associated subset of instructions is interrupted.

11. The computer-implemented method of claim 10,
wherein the one or more programmatic routines correspond
to routines of at least one of a virtual machine monitor, a
service domain layer, or a guest domain layer.

12. The computer-implemented method of claim 8,
wherein the programmatic routine is updated by application
of a software patch.

13. The computer-implemented method of claim 12,
wherein authenticity of the software patch is authenticated at
a time prior to the application.

14. The computer-implemented method of claim 8,
wherein:

the one or more processors are based on an Intel Architec-

ture;

the hardware-supported system management capabilities

include a System Management Mode inherent to the
Intel Architecture; and

the hardware-supported system management capabilities

are invoked using a system management interrupt.

15. A computer system, comprising:

one or more processors; and

memory, including instructions executable by the one or

more processors to cause the computer system to at
least:
receive requests to update one or more operating sys-
tems in active operation upon the computer system;
process the received requests by at least:
pausing the active operation of the operating system
by at least entering a privileged management mode
supported by the processor;
updating the operating system in accordance with the
received request; and
at a time after the operating system has been updated,
resuming the active operation of the operating sys-
tem.

16. The computer system of claim 15, wherein the privi-
leged management mode is a system management mode of
the processor.

US 9,176,752 B1

15

17. The computer system of claim 15, wherein the active
operation of the operating system is paused by an issuance of
an interrupt that causes the processor to enter the privileged
management mode.
18. The computer system of claim 15, wherein a firmware
of'the computer system is adapted to include executable code
that at least updates the operating system, and wherein the
executable code is executed by the one or more processors at
a time after entering the privileged management mode.
19. The computer system of claim 15, wherein the operat-
ing system is updated using a software patch that resides in a
subset of the memory that is only accessible to the processor
while the privileged management mode is entered.
20. One or more non-transitory computer-readable storage
media having collectively stored thereon executable instruc-
tions that, when executed by one or more processors of a
computing resource provider’s computer system, cause the
computer system to at least:
receive an instruction to the one or more processors to enter
a hardware-supported system management mode so as
to suspend operation of actively operating code;

process the instruction to enter the hardware-supported
system management mode;

at a time after entering the hardware-supported system

management mode:
obtain a code patch that is effective to update the code;
apply the code patch to update the code; and

10

15

20

25

16

at a time after the code patch has been executed, enable
the processors to resume the active operation of the
code.

21. The computer-readable storage media of claim 20,
wherein the instructions cause the computer system to further
verify authenticity of the obtained code patch by at least
performing a cryptographic operation on the obtained code
patch.

22. The computer-readable storage media of claim 20,
wherein the code patch is obtained from a network location
that is accessible to the computer system.

23. The computer-readable storage media of claim 20,
wherein a firmware associated with the computer system is
adapted to include executable instructions that, when
executed by the computer system, cause the computer system
to at least apply the code patch at a time after entering the
hardware-supported system management mode.

24. The computer-readable storage media of claim 20,
wherein the actively operating code is a hypervisor that has
direct access to hardware associated with the computer sys-
tem.

25. The computer-readable storage media of claim 20,
wherein the actively operating code is associated with a plu-
rality of customers that concurrently access the computer
system.

